1	An introduction to multivariate analysis.
	Lecture 2: Exploring and presenting dependencies and group
	membership
2 🗖	Methods considered here
3 🗀	Methods not discussed here
4	Multiple regression
5	A Multiple Linear Regression Equation
6	An Example of Multiple Regression
7 🗖	Two Constrained Ordination Methods
8 🗀	The objectives of multivariate analysis
9 🗖	Constrained methods are used in many disciplines
10 🗖	An example application – estuarine fish
11 🗖	An example: the effects on dependent variables
12 🗖	An example: the ordination of the samples (years)
13	General organisation of the data
14	The size of the Data Tables
15 🗖	Use spreadsheet programs to organise data
16 🗖	Types of variables
17 🗖	How many variables and objects are allowed?
18 🗖	Transformations
19 🗖	An example without transformation
20 🗖	Transformation of the environmental data
21 🗖	A log transformation of the primary matrix
22 🗖	Redundancy Analysis
23 🗖	Redundancy Analysis
24 🗖	Redundancy Analysis
25 🗖	Presenting Redundancy Analysis output
26 🗖	Scaling Redundancy Analysis Plots
27 🗖	Measuring significance for Redundancy Analysis
28 🗖	Permutation tests for Redundancy Analysis
29 🗖	Canonical Correspondence Analysis
30 🗖	Canonical Correspondence Analysis
31 🗖	Canonical Correspondence Analysis

32 Canonical Correspondence Analysis Output
33 Scaling CCA Output
34 Representing nominal variables
35 TRepresenting the Response to a Single Variable
36 Which score to plot?
Permutation tests for CCA
³⁸ Choosing between CCA and RA
39 Multicollinearity
⁴⁰ Take care not to create multicollinearity
41 T Stepwise variable selection
⁴² Discriminant Analysis
⁴³ The Purpose of Discriminant Analysis
⁴⁴ Fisher's approach to Discriminant Analysis
⁴⁵ Applications of Discriminant Analysis
46 In conclusion